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INTRODUCTION

Space stations, satellite solar power stations, space communication
antennas, and space platforms are examples of orbiting large space struc-
tures proposed both for military and nonmilitary applications [1]. An
attractive design for large space structures is the construction of
structures with a large number of repetitive 1éttice elements. However,
the static and dynamic analyses of large lattice structures using conven-
tional methods are cumbersome because of the large number of structural
elements involved. Thus, methods have been devised such that large space
structures may be modelled adequately as equivalent anisotropic continua
[2-4].

The dynamic failure (fracture, buckling, joint disassembly, etc.)
propagation and failure arrest behaviors of an equivalent continuum model
of space lattice structures will be considered in this study using concepts
in fracture mechanics and wave propagation. For simplicity, the equivalent
continuum will be assumed to be orthotropic. Furthermore, the transverse
shear deformation of the equivalent continuum will be assumed to dominate.
The geometry and material of the basic repetitive lattice structure are
such that the structure can be modelled as an orthotropic shear continuum.

Double cantilever beam models are well established fracture mechanics
models in the study of crack propagation in a material continuum [5]. An
orthotropic double cantilever shear beam (DCSB) model will be used here

to study Mode I dynamic failure (which for convenience is assumed to be
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fracture) and arrest in continuum models of lattice structures. Ortho-
tropic DCSB models have been used to study crack propagation in composite
materials [6,7] and the results can be applied directly to continuum
models of lattice structures.

The fracture behavior of a continuum is characterized by the dynamic
fracture toughness which is the incremental energy absorbed by the incre-
mental crack extension. It is shown that for a velocity-independent
dynamic fracture toughness, the crack-tip speed is constant and the crack
is arrested abruptly when the reflected initial disturbance catches the
crack tip in an orthotropic homogeneous DCSB model [6]. When a second
material region of semi-infinite width is introduced as a crack arrester
section, it is observed that with the proper choice of arrester materials,
the crack can be stopped at the materials interface [7]. Furthermore,
if the crack is not stopped at the interface, the crack propagates in the

arrester section with a different constant velocity and the crack can

then be stopped when the reflected initial disturbance catches the crack
tip. It is important to note, however, that the introduction of the
arrester section may actually degrade the structure if the crack is not
arrested at this point [7]. (The orthotropic DCSB mdoel containing a
semi-infinite width arrester region is denoted as the orthotropic duplex
DCSB model [7].)
In this study, an orthotropic DCSB model with a finite width

arrester section will be considered. The effect of the finite width

arrester section on crack propagation will be studied. In a specific
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space lattice structure, the finite width arrester section might represent
a local region in the lattice structure where a different repetitive
lattice truss, a joint, a material change occurs. The continuum model
representing the primary space lattice structure will be denoted as the
primary material and the continuum model of the localized different region
will be denoted as the arrester material.

Again, it should be emphasized that while the specific failure mode
discussed here is fracture, this is done only for convenience and speci-
ficity. In fact, as already indicated, the "failure" could represent

buckling collapse of individual elements, loss of joint integrity, fracture

or any other energy-absorbing degradation process in the lattice structure.




DCSB WITH FINITE WIDTH ARRESTER SECTION

The structure to be analyzed consists of a primary material and a
finite width arrester section as ghown in Fig. 1. The arms of the cracked
specimen are assumed to be shear beams. Thus, the shear beams exist in
the region 0<x< &(t), where x is the coordinate in the direction of crack
propagation, t is time, and 2(t) is the time-dependent crack length. The
transverse displacement in each arm is denoted by w(x,t). The specimen
initially contains a crack of length Zo. The crack opening at x=0 is

maint2ined constant at 2w, throughout the test. The primary material has

0
shear moduius G‘, mass density_pl, and a shear wave speed given by

C, =4/ — . (1)

The material in the arrester section has shear modulus Gz, mass density

pz, and a shear wave speed given by

The arrester strip is located at a distance zp , which in order to
1
encounter the moving crack tip must satisfy eqn. (3) of [7],

b, < 0 (3)

where n is the bluntness parameter. From the duplex specimen result [7],

it is known that at the primary material/arrester material interface the




crack may arrest with an arrest length lp . If arrest does not occur at
’ 1
zp » the crack may arrest later when the initial disturbance catches the
I .
crack tip with a corresponding arrest length L. as given in eqn. (51) of

[7] as

P -t

n+1 ] 2
2 "p,(n > ]) ! . + 2, — -1 (4)
2 2
1 -2 | - ==
2 )

where 2] and iz are the crack speeds in the primary and arrester sections,
respectively. For the finite width arrester section problem, it will be
assumed that the arrester strip extends from 2p and includes the region

1

up to £ which is less than 2., Thus,
P, c

L <L <8 . (5)
The boundary conditions and the initial conditions in terms of the

slope q and transverse velocity v are the same as those derived in [6].

The boundary conditions are

v=0 at x=0 (6)
qi + v =0 at x=2(t) (7)
where v is the transverse velocity (2w/3t) and q is the slope (3w/3x).

The initial conditions are

v= 0 (8)
w
0
2 Qs = "7 . (9)
9= 9 z,

In addition, there are continuity matching conditions at the primary ma-
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terial/arrester material interface and subsequently at the arrester mate-
rial/primary material interface. The equilibrium requirement on the shear
force across the interface may be expressed as

(6q)_ = (Ga) (10)

and the geometric compatibility requirement on the transverse velocity
across the interface may be expressed as

v =v ()

where the minus (=) subscript is used to denote the material just to the
left of the interface and the plus (+) subscript is used to denote the
material just to the right of the interface.

In an earlier paper [6], it was shown that in the orthotropic shear
beam disturtances propagate along characteristics, along which the fol-

lowing equations hold:
qu - v = Constant along —t-=C (12)

dx
C.q + v = Constant along g==-C_ (13)

where Cs is the shear wave speed of the material.

-10-
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CRACK PROPAGATION AND ARREST CRITERIA

The dynamic fracture criteria are [7]

§,ﬂd= R. i=1,2 (14)

and the fracture arrest criteria are [7]

%< R, i=1,2 (15)

wiere 533 is the dynamic crack extension force and R is the dynamic frac-
ture toughness, both per unit of beam width. The dynamic fracture tough-
ness of the primary material und the arrester material are denoted by R]
and R2, respectively. Both R] and R2 are assumed to be independent of

the crack-tip speed. The dynamic crack extension force is [7]

%aGihé -%) 2(2,t) i=1,2 . (16)

o
By setting £=0 in eqn. (16) and by using eqn. (14), the minimum

crack=tip slope Ynin that is required to maintain crack propagation is [6]

qmin(i) *ANTTH i=1,2 . (7)

An equivalent fracture arrest criterion is

< =
max q qmin(i) i=1,2 . (18)
where max q is the maximum erack-tip slope.
-11-
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MOTION OF DCSB DURING CRACK PROPAGATION

At time t=0, the crack tip begins to propagate in the x direction.
The motion of the crack tip and the specimen arms may be described in
terms of the (x,t) plane as shown in Fig. 2. As the crack begins to ex-
tend, initial disturbances in the values of v(x,t) and q(x,t) are pro-
pagated along line AB. At point B, these disturbances reflect from the
left~hand boundary x=0 and then propagate back along line BC through
the arrester section., Disturbances may then reflect from the moving
crack tip at point C and propagate back toward the left-hand boundary.
Also, as the crack tip moves through the materials interfaces at points
H and S, disturbances are propagated :oward the left-hand boundary, Re-
flections at points such as P, Q, and R on the interfaces can be traced
in a similar manner.

In this simplified shear beam model, the finite size of the arrester
section has no effect on crack propagaticn if the crack length £(t) is
less than £ . Thus, the results from the duplex specimen analysis [7]

P2
are valid up to point S.

Crack Motion Just Beyond Point §

At any location in the (x,t) plane, the values of v(x,t) and q(x,t)
may be determined by following eqns. (12) and (13) along the character-
istics, The primary focus of this analysis is the behavior of the dynamic

crack extension force beyond point S. Because the dynamic crack extension

-12-
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depends on the crack-tip parameters, namely, the slope and the velocity,
the calculations which follow will be directed toward the determination
of these details at the crack tip.

In order to determine the conditions along the crack-tip trajectory
beyond point S, the technique used in [7] to obtain crack-tip properties
just beyond point H will be applied. In Fig. 2 consider point 22 which
is infinitesimally beyond point S and is on the crack tip. Also, consider
point 21 which is infinitesimally close to point 22 but which is on the
arrester material side of the interface. Becau;e points 21 and 22 are
infinitesimally close but on different sides of the materials interface,
the matching conditions in eqns. (10) and (11) may be assumed to hold
between them. Similarly, points 4 and § represent the ''same'* location
on the left-hand materials interface except that point 4 is in the pri-
mary material and point § is in the arrester material.

Considering Fig. 2, the characteristic eqns. (12) and (13) yield

C2q5 S v ™ €9y, - Vay (19)
C2qS + Vg = Czq2 +v, (20)
Clq3 Sy = Ciay = vy - (21)

Point 3 is below the initial disturbance line AB and is therefore in the
initial state as described by eqns. (8) and (9),
v, =0 (22)
43 = gy - (23)

Point 22 is on the crack tip, so the boundary condition in eqn. (7) gives

-13-
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2 =0 . (24)

92%2 * Va2

The matching conditions (10) and (11) between points 21 and 22 are
62921 = 6192, (25)
Y21 * Va2 (26)
and the matching conditions (10) and (11) between points 4 and 5 are

(28)

V,‘-VS .

The state at point 2 is given by eqns. (24) and (25) of [7] as

q
q, = o, (29)
G "
6 G
%.q
v, = — (30)

> (31)

9,, = q
2 0 C. G.\/G. &
A Vo
[ AV
2 §1/\& G

b

Va2 = %559, (32)

where 22 is given by eqn. (31) of [7]. The crack speed at point 22 is

-14-
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122 which as shown in [7] may be determined from eqns. (14) and (16).
The value of izz will not be computed, however, since only the crack

arrest conditions at point S are sought in this study.

Crack Arrest Conditions at Point S

The crack arrest criterion in terms of the crack-tip slope as given
by eqn. (18) will now be used. The minimum crack-tip slope required to
maintain a propagating crack in the primary material beyond point S will
be given by eqn. (17) as

Ry
Iin(1) © ETF . (33)

The maximum available crack-tip slope at a point, such as point 22, just

beyond point S is obtained for quasi-static crack extension (i22==o) from
eqn. (31) as
r<,.EI_“_2> : ]
c2 G] ( - fi£>-+ 2 E!-
G, & ¢, )
2.2
G G
max q,, = g, A T3 . (34)
2l o)
| 2 2 M ]

Because point 22 is just beyond point S, according to eqn. (18) crack
arrest at point S requires

Inin(1) > MaX 9y - (35)

-15-
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Substitution of eqns. (33) and (34) into eqr. (35) gives

(,.flf&) .
C, G ) ¢y
6, £, 2 2
e P ——
Ry 6 G
Th 9 3 T. G . (36)
) IQ o z)
6. t. G,
i 2 2 & ]

f(.-c_‘iz_) . 7
CZG.'_] z_2+2fl

G, J ¢, C,

2 2

m—  a—

G . &

1>/m Y A (37)

where as indicated earlier iz is given.by eqn. (31) of [7]. Eqn. (37)
is the crack arrest criterion at point S. If eqn. (37) is satisfied,

the crack will arrest abruptly as the crack tip emerges from the arrester
section,

For the specimen shown in Fig. 1, the results from the duplex speci-
men analysis [7] hold until the crack tip reaches the right-hand bourdary
of the arrester section at point S. The duplex specimen analysis shows
that the crack may be arrested at the left-hand boundary of the arrester
section. This arrest condition is given by eqn. (32) of [7]. As shown

in Appendix B, this arrest condition can be simplified to

11
N —e—ma— 1 . (38)
G,R,

-16-
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An alternate approach using eqn. (18) in terms of the crack-tip slope has
also been performed in Appendix B to yield the same result. Eqn. (38) is
the condition for crack arrest at point H.

Eqn. (37) is the crack arre#t condition at point S. Eqns. (37) and
(38) are independent because eqn. (38) does not contain the shear wave
speeds whereas eqn. (37) contains the shear wave speeds as well as the

relatively complicated £ Thus, it is possible to design an arrester

2°
strip system to arrest a crack when it enters the arrester by considering
eqn. (38) or when it exits the arrester sectloﬁ by considering eqn. (37).
Therefore, the finite width arrester section gives an additional independ-
ent opportunity to arrest the crack before the reflected initial distur~
bance catches the crack tip at point C., As a further remark, it is in-
teresting to note that whereas the crack arrest conditions at points H

and S are independent, it is shown in Appendix C from the results of [7]
that the crack arrest condition at point C is always easier to satisfy

than the arrest condition at point H,

If the crack is arrested at point S, the crack arrest length is

L. =2 . (39)
S Py
The crack arrest time is
(2,5
tg =t + ———1o | (40)
L
2

Replacing t, in eqn. (40) by the value given in eqn. (34) of [7] gives

-17-
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) 2 =2 )
t_91/n+|)+("z P
S Cl \n -1 i

Eqns. (39) and (41) give the crack arrest length and time, respectively.
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, Large space structures can often be modelled adequately as equiva-
® lent anisotropic continua. In this study concepts in failure mechanics

; and wave propagation have been applied to analyze the dynamic failure

; and failure arrest behavior of such an equivalent continuum. For speci-
|l ® ficity, fracture is analyzed as the failure process, although buckling,

! the Toss of joint integrity or any energy-absorbing degradation process

: in the lattice could have been considered.

| ™ An orthotropic double cantilever shear beam (DCSB) model has been

analyzed to study Mode I dynamic fracture and arrest in continuum models

X of lattice structures. The DCSB model consists of both a primary material

. and a finite width arrester section. For the DCSB model consisting of

% orthotropic materials having a crack-speed-independent dynamic fracture

% toughness, the DCSB model predicts that under the proper conditions the

. crack may arrest abruptly as it enters the arrester region [7]. Further,

, if the arrester has a finite width, the crack may arrest as it exits the

arrester region. The arrest condition at the exit of the arrester region

"a has been derived here and it is noted that this condition is independent

i of the other arrest conditions. Also, the arrest conditions at the

2 entrance of the arrester region and at the point at which the initial

}‘; reflected disturbance overtakes the crack tip are compared. It has been

‘ shown that the latter arrest condition is a less stringent condition

: than the former, indicating that if the crack is not arrested at the

‘ |
® ?
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entrance of the arrester region, the crack may be arrested when the
initial reflected disturbance overtakes the crack tip beyond the
arrester section.

The results in this study have provided an analytical basis for
the investigation of dynamic failure propagation and failure arrest
in space lattice structures by applying fracture mechanics and wave

propagation techniques to an equivalent continuum material model of the

space lattice structure.
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APPENDIX A: CRACK-TIP VELOCITY AND SLOPE JUST BEYOND POINT $

Eqns. (19) through (30) can be solved to obtain the crack-tip velo-
city and slope at point 22. Substitution of eqns. (22) and (23) into
eqn. (21) gives

C‘q0 = Ciay - vy, - (A1)

Substitution of eqns. (27) and (28) into eqn. (A1) gives
G

1% = ¢ ET-qS -vg - (A2)

Addition of eqns. (20) and (A2) and rearrangement of their sum give

—_..1—(c2q2 + Vo + clqO) . (A3)
\C + C )
Substitution of eqn. (A3) into eqn. (20) gives
Vs = Gy * '—“—E—(cz"z * vyt G . (A4)
1+ 2
Replacing Vos in eqn. (26) by the use of eqn. (24) yields
Vo ™ "G95k, - (AS)

Substitution of eqns. (25) and (A5) into eqn. (19) gives

G

i
295 = V5 = 95,(C, T, +

e

c (A6)

22)

Substitution of eqns. (A3) and (Ab4) into eqn. (A6) and solving for 9y,

give
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G &
1 - -;-E-- ((:zq2 + vz) + 2C,q,

92 | G, 5 . . (A7)
] + == ==}{C, =+ 2
Cz G‘)(Z G2 22)

—— e p—
4yg = g ] ‘ (a8)
2 0 C, G.\/G, £

) 1 72 1 22

S | (i
" 2 1/\"2 t2/)
Also, from eqn. (32)
Vaa = "H29, - (A2)

Eqns. (A8) and (A9) describe the crack-tip slope and velocity, respectively,

at point 22, which is a point on the crack tip just beyond point S.
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APPENDIX B: CRACK ARREST CRITERION AT POINT H

The crack arrest criterion at point H is given in eqn. (32) of [7] as

o E£.+ n i l.fol;i <0 (81)
P2 & TRy mGpRy

Egqn. (B1) can be manipulated to give

p,R G,R
(:‘___'RZ + 1)(n —-—G’R‘ - 1) <o . (B2)
P2™ 272

Because the terms in the first set of parentheses on the left-hand side
of eqn. (B2) are always positive, the satisfaction of the inequality
(B2) requires that

€k,

’ ner- <) - (B3)
) 22

Thus, expression (B1) can be simplified to expression (B3).
Eqn. (B1) was obtained by setting i’.zSO after using the fracture cri-
L4 terion in eqn. (14) and the crack driving force in eqn. (16). An alter-
nate method is to consider the crack-tip slope and to use eqn. (18) to
derive the crack arrest conditions. The minimum crack-tip slope required

R to maintein a propagating crack in the arrester material is given by eqn.

(17) as

J 2
& Umin(2) = E;F . (B4)

The maximum available crack-tip slope at a point just beyond point H,
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such as point 2 in Fig. 3 of [7], is obtained for quasi-static crack

extension (l.!.2=0) from eqn. (24) in [7] as

G,

max q, = E;'qo . (85)

Because point 2 is just beyond point H, for crack arrest at point H eqn.

(18) requires that
Qnin (2) > max q, . (86)

Substitution of eqns. (B4) and (B5) into eqn. (B6) gives

R2 G] (87)
- > —q R B7
GZh Gz 0

Replacing g, by eqn. (30) of [1], eqn. (B7) becomes

11

G,R

1>n (88)

Eqn. (B8) is identical to eqn. (B3) as expected. As a check, by setting
G, =G, and R) =R, ean. (83) or eqn. (B8) indicates that the crack will not
arrest because 1 ¥n, Recall that in accordance with [6], if there is no
arrester section, the crack will not arrest until the crack tip reaches
point C, the point at which the reflected initial disturbance catches the
crack tip, Finally, it is interesting to note that the materials' den-
sities, and thus the shear wave speeds, do not affect the crack arrest

criterion.
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APPENDIX C: COMPARISON OF CRACK ARREST CRITERIA AT POINTS H AND C

The crack arrest condition at point H as the crack tip enters the

arrester section is given in eqn. (38) as

1> 0t (c1)
22

Also, in a duplex specimen, the crack arrest condition at point C is

given in eqn. (67) of [7] as

(1 -3)(52_5‘_- 1)
281, 0 HN\G 5
n G, .
2 S2,5
R R, Gt T,
< > — . (c2)
g T G
2 1 (2 L.
et
L 172 J

Eqn. (C2) can be manipulated as follows:

2 "2
— —
- Gl Cl -
(@)oo s, L GNE G
C, G, R,G, GIn G, R .
24,2
i & T _
or,
-26-
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LB
6 %
1+ — =
6 &
> — (c3)
G,R 2 )
11 (-—--—- + l)
n R CI GZ
22
Eqn. (C1) may be rewritten as
>1 . (c4)

Egn. (C4) is the arrest condition at point H while eqn. (C3) is the arrest
condition at point C, where it .is emphasized that in this discussion point
C is within the arrester section. The dependence of eqns. (C2) and (Ck)
is of interest.

If the crack is not arrested at H, then from eqn. (C&4)

<1 . (cs5)

Thus, the crack proceeds to point T and encounters the arrest condition

represented by eqn. {(€C3). For this case, because eqn. (C5) is known, the
crack will not arrest if the right-hand side of eqn. (C3) is equal to or
larger than unity. So the crack may be arrested at point C if the right-

hand side of eqn. (C3) is less than unity, that is, if
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<1 . (cé6)

The crack velocity iz is permitted to be non-negative.  The left-hand side
of eqn. (C6) will be maximized by letting i2==0. Thus, expression (C6)

will certainly hold if the following condition is satisfied:

2.+ Eg.El -1
n Cl G2
2 1 + 1
T, G,
1 2
Expression (C7) can be simplified to
2 Cz G' -1 <-C2 Gl + 1
n C, G, C, G,
oM M2 172
or,
LR (c8)
n L]

The condition (C8) is glways valid because n is always greater than unity,
and so expression (C6) will always hold.

Thus, the right-hand side of expression (C3) is less than unity and so
the condition (C3) is less stringent than the condition (C4k). Therefore,
if the crack is not arrested as it enters the arrester section, it may
arrest within the arrester section at the point where the reflected initial

disturbance catches the crack tip.
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Fig. 2. The (x,t) plane showing the crack-tip trajectory and certain
characteristic lines for evaluating the crack-tip conditions

at point 22,
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